TURBO PUNJAČI
Kada ljudi govore o prerađenim motorima, trkaćim automobilima, tema o turbopunjačima se često dotakne.
Danas su turbopunjači česta pojava, pojavljaju se puno češće u auto industriji nego u moto industriji, na našu žalost.
Turbo punjači mogu nabiti još kojeg ždrijebca na naš motor bez prevelikog povećanja težine samog agregata, što nam je već velika prednost.
Probat ću malo pojasniti kako to turbaci rade, kako preživljavaju toliko velika opterećenja (vrlo slična radu jednog dijela turbinskih motora u zrakoplova samo u smanjenom mjerilu), što su blow-off i waste-gate ventili te kako pomažu radu turbine


Turbo punjači su dio sustava prednabijanja zraka.

Oni komprimiraju zrak u cilindre motora tako da tlak na ulazu u cilindar je veći od atmosferskog.
Prednost prednabijanja zraka je u tome što ako više zraka nabijemo u cilindar motora, znači da možemo dati i više goriva. Što imamo više goriva, znači da ćemo dabiti jaču ekspanziju u cilindru. Motor sa turbopunjačem proizvodi više snage od jednakog motora bez turbo punjača.

Time pridonosimo odnosu snage i težine motora u korist snage.
Da bi smo dobili prednabijanje tj. nadtlak u usisu, turbo punjač koristi ispušne plinove za pokretanje turbine (znači odbačenu energiju pretvaramo u koristan rad) koja je na istom vratilu kao i radijalni zračni kompresor koji nam nabija zrak.

Turbina turbopunjača se vrti i do 150,000 okretaja/min.

To je cca 10 puta brže od vrtnje agregata na tzv. RR motorima, a s obzirom se turbina vrti u strujama ispušnih plinova možemo predpostaviti da radi u vrlo teški uvijetima.

OSNOVE

Siguran način da dobijemo više snage u motoru je da povečamo količinu zraka i goriva koje motor može sagoriti.

Jedan od načina je da dodamo još koji cilindar ili da postojeće cilindre povećamo.

Medjutim, povećanjem broja cilidara dobijamo još pokretnih djelova koji stvaraju frikciju pa s time i oduzimju dio snage koji će stvoriti, a i time poskupljujemo jako izvedbu samog agregata. Povećavanje obujma…. može, dobijamo moment motora s time i snagu, ali ga već ograničavamo agregat u brojevima okretaja jer masa klipa nam je veća pa tu dobivamo strahovito velika naprezanja na klipnjači i radilici.

U jednom i drugom slučaju troškovi izrade postaju ekonomski neopravdani.

Turbo je u ovom slučaju jednostavnije rješenje za dobijanje snage.

 

Ako su ga koristili na zrakoplovima WWII gotovo u svim modelima, trebalo je izvuči pouku od toga.

Oni su još špricali i mješavinu vode i etanola u usis kako bi ohladili usisnu smjesu da je više može stati u cilindar koliko su ga komprimirali.

Oni su izvlačili svaki dio energije kako bi dobili još koji KW pomoću turba a da pri tome ne dodje do detoniranja goriva.
Normalni tlak zraka na razini mora je cca 14.7 Psi tj. 1 bar.

Tipično stvoreni nadtlak turbo punjača je od 6- 10 psi iznad atmosferskog što zanči da nam tlak pri ulazu u cilindar skače na 22.7 psi.

Mogli bi smo reći da očekujemo nekih 50% više snage, ali kako ništa nije savršeno tako ni turbo punjači pa ta vrijednost pada na nekih 30-40% poboljšanja u snazi što je jako veliki uspjeh.
Jedan od razloga nesavršenosti turbo punjača je taj što položaj turbine u ispuhu na neki način stvara otpor ispušnim plinovima tako da u ispušnom taktu klip mora gurati plinove prema van nailazeći na veći tlak ispušnih plinova (back- pressure).

To oduzima dio snage motora.

UNUTAR TURBOPUNJAČA

Turbo punjač je pričvršćen na ispušni kolektor tako da obuhvaća sve ispušne cijevi motora. Ispuh iz cilidara tjera turbinu da se počne vrtiti (plinska turbina).

Ona je spojena vratilom na radijalni kompresor koji se nalazi između filtera zraka i usisa motora. Kompresor tada gura komprimirani zrak prema cilindrima i i pomaže klipovima u kretnji jer klipovi ne troše energiju na usis već ih nad tlak gura prema dolje.

Mala pomoć, ali pomoć.
Ispuh iz cilindara prolazi kroz lopatice turbine, gurajući lopatice i tjerajući turbinu na vrtnju.

Što više ispušnih plinova prolazi kroz turbinu to će se ona brže vtriti.

Unutar turbopunjača.
Na drugoj strani vratila nalazi se kompresor koj znamo što već radi.

On je centrifugalnog tj. radijalnog tipa.

On uvlači zrak na sredini lopatica i baca ga radijalno od sredine prema obodu turbine, kako se kompresor vrti.
Postoji još i aksijalni kompresori, ali oni se ne koriste na turbopunjačima u moto i auto industriji.

Lopatice kompresora turba
Da bi turbine izdržale brzine vrtnje od 150,000 o/min, vratilo turbine mora biti pažljivo učvršćeno.

Većina ležaja bi jednostavno eksplodirla pri toj vrtnji, jer to je već i više od nekih turbo prop motora (turbo osovinski motori na zrakoplovima, po principu rada mlazni, samo što im je dodana elisa naprijed koja proizvodi vučnu silu).

Zbog tog razloga turbopunjački koriste tzv. mokre ležajeve.
Mokri ležajevi drže vratilo na tankom filmu ulja unutar tijela ležaja koje se stalno propumpava oko vratila.

Za tu svrhu koristi se motorno ulje i motorna uljna pumpa tako da nije potrebno dodatnih elemenata.Ovakav tip ležaja ima dvostruku ulogu: hladi vratilo i još neke djelova turbopunjača te dozovoljava vrtnju vratila bez prevelike frikcije.

PREVELIKI PRITISAK

Kada zrak pod pritiskom upumpavamo u cilindre pomoću turbopunjača, on se nakon toga još stlačuje pod pritiskom klipa.

Tu imamo opasnost od detonacije goriva tj. prijevremenog paljenja smjese (kuckanja cilindra).
Ta pojava nam se dešava jer sa stlačivanjem zraka, raste i temperatura zraka.

Temperatura zraka može toliko narasti ( i preko 350 stupnjeva Celzijevaca) da zapali gorivo prije vremena, prije nego svječica da iskru.

Motori sa turbopunjačima obično moraju koristiti više oktansko gorivo da bi izbjegli kuckanje cilindra (eng: knocking). Ako je pritisak u cilindru jako velik, konstruktivni kompresijski omjer motora bi se trebao smanjiti da bi smo izbjegli mogučnost kuckanja.

JOŠ MALO O TURBU

Jedan od najvećih problema sa turbopunjačima je to što ne omogućavaju momentalni porast tlaka punjenja na okretanje ručice snage.

Potrebno je neko vrijeme (1-1,5 sek.) da bi turbina dostigla okretaje gdje počinje stvarati pritisak za punjenje. To rezultira u osjećaju nedovoljng odziva motora u trenutku (turbo rupa), medjutim kada se turbina zavrtni na max dozvoljeni broj o/min i nabije tlak u cilindre, osjećaj je kao da ste ispaljeni iz katapulta. Snaga naglo raste kod tih motora dok su na relantu (min. broj okretaja) relativno nemirni i imate osjećaj nepravilnog rada motora.

Da bi smo smanjili tu tzv. turbo rupu moramo smanjiti masu rotacijskih djelova turbopunjača kao što su turbina i kompresor. Ta radnja bi nam omogućila da se turbina i kompresor zavrte brže te samim time počinju stvarati pritisak brže. Jedan od načina da smanjimo težinu je da napravimo turbopunjač manjih dimenzija.

Manji turbopunjač će prije stvoriti pritisak na manjim okretajima motora, ali tu nailazimo na problem na večim okretajima motora gdje je potreban stvarno veliki volumen zraka koji ulazi u motor. Isto tako postoji i opasnost od prebrze vrtnje turbopunjača na velikim okretajima kada puno ispušnih plinova prolazi kroz turbinu.

U ovom dijelu možemo postaviti još jedan turbopunjač većih dimenzija, koji će nam se aktivirati na većim okretajima motora gdje će on snabdjevati motor zrakom pod tlakom jer će nam on biti konstruiran da komprimira veći volumen zraka, a manjeg će isključiti pomoću ventila u ispuhu. Veći turbo punjač ima veću masu te sporije dolazi do svojeg maksimuma vrtnje, ali zato može pogurati veći volumen zraka u motor.

Ova izvedba se rijetko kada ugrađuje na motore motocikala, ali čisto zbog upoznavanja sa radom. Naravno, postoji tu još sustav turbopunjača sa pokretnim statorskim lopaticama gdje se kut tih lopatica namješta zavisno o opterećenju motora.

WASTE GATE VENTIL

Kako bi smo mogli regulirati okretaje turbine i kompresora, u ispuh se postavlja Wastegate ventil. On nam omogućuje korištenje manjih turbo punjača da bi smo izbjegli turbo rupu te nam omogućava da nam se turbina ne vrti prebrzo na velikim okretajima motora.

Wastegate je ventil koji omogućava ispušnim plinovima da zabilaze lopatice turbine. Wastegate ventil nam osjeća tlak na usisu motora te kada ulazni tlak poraste previše to nam je indikacija da se kompresor vrti prebrzo.

Tada wastegate ventil otvara prolaz ispušnim plinovima koji zaobilazi turbinu tako da samo određeni dio ispuha prolazi kroz lopatice turbine. Na taj način usporavamo turbinu nedozvoljavajući joj da prekorači max broj okretaja. Neki turbo punjači koriste kuglične ležajeve umjesto tekučih ležaja u kojima se vratilo vrti.

To nisu standardni kuglični ležajevi nego se koriste kuglični ležajevi napravljeni od najboljih materijala pa čak i keramički ležajevi postoje u tu svrhu. Takve izvedbe dozvoljavaju turbini da se zavrti još brže sa manje otpora nego sa mokrim ležajevima te upotrebu manjih i lakših vratila.
Keramičke lopatice turbina su lakše od čelčnih koje se koriste u većini turbopunjača. Naravno, to još pridodaje turbini da smanji turbo rupu, ali izvedba je vrlo skupa te vrlo rijetka. Proizvođači turbopunjača još su ponudili lopatice turbina načinjene od titanija. Titanij je vrlo lagan prijelazni metal fenomenalnih termičkih i mehaničkih svojstava.

Za cijenu takve perverzije neznam, ali vjerujem da je cijena paprena.

INTERCOOLER

Kada se zrak stlačuje, zagrijava se, a kada se zrak zagrijava onda se i širi. Znači da nam dio porasta tlaka od turbopunjača rezultat grijanja zraka prije nogo što je ušao u motor.

To nam smanjuje učinak jer na taj način dobivamo rijeđi zrak, a nama je potrebno što više gustog zraka.

Da bi smo povećali snagu motora treba nam što više molekula zraka što neophodno ne znači veći tlak.
Hladnjak stlačenog zraka tzv. intercooler je dodatna komponenta sustava prednabijanja zraka koja izgleda kao obični hladnjak osim što kroz njega prolazi stlačeni zrak, a oko njega prolazi zrak koji ga hladi.

On nam se nalazi poslije kompresora prije ulaska u motor i hladi nam stlačeni zrak iz kompresora. Ako nam je prednabijanje 7 psi, sa intercoolerom ćemo imati isti tlak prednabijanja, ali će u tom zraku biti više molekula zraka nego u onom koji nema intercooler.

Isto tako je manja opasnost od detonacije goriva jer zrak nije vruć pri samom ulasku već je ohlađen tako da još i na taj način možemo povećati tlak na ulazu u motor , ali to je druga tema i o tome drugom prilikom.

RASTERETNI (BLOW OFF) VENTIL

Mogao sam i prije ukomponirati ovaj dio u sustavu turbopunjača, ali on i nije toliko bitan za konvencionalnu uporabu.

Da li ste ikada čuli ubrzanje nekog vozila ili motora i kod puštanja snage onj zvukk „Pssshh“ kao da nešto šišti pod jakim tlakom u atmosferu?

Kad se to čuje onda se zna da tu nešto nije standardno. Naime, kada okrenemo ručicu snage i krenemo sa ubrzanjem, kompresor nabija tlak u cilindre i sve radi kako treba, mođutim kada pustimo ručicu snage onda nam pritisak negdje mora brzo izaći van.

Jedini put mu je nazad kroz kompresor što je nepoželjno jer time dolazi do pumpanja kompresora te zaustavljanja lopatica kompresora. Pumpanje kompresora je fenomen kada tlak iza lopatica kompresora postane toliko velik da ga kompresor više ne može savladati tj. uguravati nego se vraća nazad te time usporava vrtnju kompresora i/ili ga potpuno zaustavlja, a može i promjeniti smjer vrtnje gdje onda temperature na turbini postaju toliko velike da je termički unište.

To sigurno ne želimo.
Da bi se to izbjeglo, višak zraka se preko rasteretnog ventila tzv. compressor bypass valve (CBV) vraća ispred kompresora, ali iza MAF senzora te se sprijčava pumpanje kompresora.

Postavlja se iza MAF (Mass air flow senzora) kako ECU ne bi obrizgala goriva u motor jer bi osjetila veći volumen zraka, ali greškom.
Drugo rješenje je rasteretni ventil u atmosferu tzv. blow-off ili dump valve koji isto to radi, ali taj višak zraka baca u atmosferu omogučavajući na taj način nesmetanu vrtnju kompresora i ne stvarajući nikakve otpore koji bi i malo kočili turbinu i kompresor.

Ukoliko trebamo ponovo brzo dati snagu motoru, lopatice turbo punjača se i dalje vrte slobodno tako da je u ovom slučaju turbo rupa gotovo nepostojeća.
Na slici iznad gore možemo vidjeti zatvoreni rasteretni ventil i usis otvoren, zrak pod tlakom ulazi u motor.

Ubrizgavanja goriva na motorima takozvano – Injection ubrizgavanje

Kako radi sustav ubrizgavanja goriva
Da bi smo zadovoljili zakone o učinkovitosti goriva i manje zagađivali našu atmosferu, gorivni sustavi na modernim motorima su se promjenili u zadnjih par godina.
Sada bi mogli malo opisati kako gorivo dolazi do motora u cilindre, što znači pojam multi-point fuel injection i throttle body fuel injection.

Da bi smo dostigli zahtjeve niskih emisija štetnih plinova, katalizatori su ušli u uporabu.
Međutim, da bi katalizatori dabro radili svoj posao, omjer goriva i zraka treba biti točno u određenom omjeru da bi smo postigli efekt kada nam katalizator dolazi do izražaja.
To je onaj magični omjer 14,7:1 znači 14,7 kg zraka nasuprot 1 kg goriva da bi smjesa bila idealna.

Tu su svoju ulogu pronašle i tzv. lambda sonde tj. senzori kisika u ispuhu.
Lambda sonda kontrolira tj. mjeri količinu kisika u ispuhu i šalje taj podatak glavnoj centralnoj jedinici koja pomoću toga kontrolira koliku količinu goriva će ubrizgati u cilindar.
Kada motor počne prihvaćati informacju od lambda sonde onda motor radi u closed loop režimu rada. Dok je motor hladan, radi u režimu open loop tj. ne prihvaća podatke lamdba sonde nego radi po tvorničkim postavkama tzv.choke na karburatorima.

U tom preciznom omjeru goriva i zraka karburatori nisu mogli zadovoljiti normu stoga je i krenula inicijativa za promjenom sustava napajanja gorivom. Čak su u početku preobrazbe izbačeni neki sustavi kao monopolni električni karburatori koji su još bili i kompliciraniji od standardnih mehaničkih, ali se brzo odustalo od toga. Da ne pišemo puno o povijesti stiglo se i sekvencijalno ubrizgavanja goriva tzv. MPI, EFI, MPFI itd.

Tu se govori osustavu gdje je pred svaki usisni kanal ispred svakog cilindra postavljena jedna elektronski kontrolirana brizgaljka goriva koja točno određenim intervalom i tlakom obrizgava gorivo u cilindar.
Sustav se sastoji od: -gorivne pumpe smještene u rezervoaru
-senzora koji kontroliraju tempraturu, protok i tlak zraka
-senzora koji kontrolira kut bregastog vratila
-lambda sonde
-kontrolne jedinice (ECU)
-senzora temperature rashladne tekučine motora
-senzor otklona usisanog leptira
-senzor broja okretaja motora
-sensora napona el. mreže

KAKO SUSTAV RADI?

Ručica snage motora nam je spojena mehaničkim putem na usisni leptir na uvodniku zraka na kojem nam se nalazi i senzor otklona usisnog leptira (Throttle Position Sensor).

Što znači da sa ručicom snage otvaramo usis zraka i ništa više. S obzirom da nam više zraka počinje ulaziti u motor, ECU nam dobiva podatke kolika nam je masa zraka počela protjecati kroz uvodnik zraka, kolika mu je temperatura, s time i gustoća, koliko je otvoren leptir usisa, u kojem je položaju bregasto vratilo, s time na kojem je cilindru red na usis i sukladno tomu ECU nam proračuna koliko će držati otvorenim određenu brizgaljku goriva. Znači, ECU zna koje su vrijednosti konstante,a koje su variabilne i za te variabilne dobiva podatke.

Prva reakcija nam je na TPS-u jer ukoliko bi samo zrak ušao u cilindar bez točne količine goriva, motor bi trokirao.
MAF (Mass air flow sensor) nam služi za fino podešavanje točne količine ubrizganog goriva tj. on pomaže ECU da točno odredi koliko goriva treba motoru.

GORIVNA BRIZGALJKA (INJEKTOR)

Injektor je električno kontrolirani ventil koji sadrži u sebi elektro magnet koji, kada ga uključimo, podiže iglu ventila i ispušta gorivo.

Injektor je smješten u sabirnik goriva (fuel rail) koji je konstantno pod tlakom.

Tlak goriva nam omogućava gorivna pumpa smještena u rezervoaru goriva.
S obzirom da nam je sustav pod tlakom dovoljno je da imamo fine difuzore na ventilu koji će se otvoriti u datom trenutku da iz njega počne izlaziti fina maglica goriva.
Brizgaljka injektora je napravljena baš tako precizno da atomizira gorivo u finu mglicu.
Količina goriva koju će nam injektor ubrizgati u motor određena je tlakom goriva i širinom pulsa koji će držati injektor otvorenim.

Dužinu pulsa nam određuje ECU po dobivenim parametrima od svih senzora.
Algoritmi po kojemu ECU upravlja motorom su prilično komplicirani, ali postoji da bi motor zadovoljio ekološke standarde koji danas postoje barem 100000km.
Da bi smo lakše vidjeli kako i o čemu nam širina pulsa zavisi, dati ćemo primjer formule koja će nam pokazati kako ECU računa širinu pulsa.
Širina pulsa= (Bazna širina pulsa) x (faktor A) x (faktor B)

Da bi mogla izračunati dužinu pulsa, ECU prvo gleda baznu širinu pulsa u tablici koja joj je zapisana. Bazna širina pulsa je funkcija okretaja motora i opterećenja(koji se izračunava tlaka u usisu (MAF).

Recimo da je brzina okretaja motora 2000 o/min i opterećenje je 4. Vidjet ćemo da je broj u tablici koji se križa s ovim brojevima 8 milisekundi

RPM Load
1 2 3 4 5
1,000 1 2 3 4 5
2,000 2 4 6 8 10
3,000 3 6 9 12 15
4,000 4 8 12 16 20

U slijdećem primjeru, A i B su parametri koji nam dolaze od senzora. Recimo da je A temperatura rashladne tekućine, a B je količina kisika (lambda).

Ako je temperatura rashladne tekučine jednaka 100 i razina kisika jednaka 3, tablica nam kaže da su faktor A = 0.8 i faktor B = 1.0.

Factor A Factor B
0 1.2 0 1.0
25 1.1 1 1.0
50 1.0 2 1.0
75 0.9 3 1.0
100 0.8 4 0.75

S obzirom da znamo da je bazna širina pulsa funkcija opterećenja i broja okretaja motora, a da je širina pulsa=(bazna širina pulsa) x (faktor A) x (faktor B), konačna širina pulsa u našem primjeru će biti :

8 x 0.8 x 1.0 = 6.4 milisekund
Iz ovoga primjera, možemo vidjeti kako kontrolni sustav (ECU) radi neprekidna podešavanja unutar sustava.

Ovisno o tome da li je bogata ili siromašna smjesa plinova u motoru, ECU će je obogatiti ili osiromašiti, zavisno o stanju.
Svaki sustav tj. motor ima svoju tabelu po kojoj računa te kontrolna jedinica može preračunavati i nekoliko stotina kalkulacija u sekundi da bi zadovoljila tvornički podešene parametre.

Naravno, o ispravnosti motora nam zavise i ostale komponente kao npr. katalizator.

Ako je smjesa uvijek poremećena zbog nekog razloga ili kvara, trajnost katalizatora će biti uvelike smanjena.

još malo o lambda sondi

Još davne 1976. godine Volvo je predstavio svetu trokanalni katalitički konvertor sa lambda sondom, čija je namena bila kontrola emisije izduvnih gasova. Danas, trideset godina kasnije, svi moderni motori širom sveta poseduju ovaj  uređaj od ključne važnosti za zaštitu životne sredine. 
 

“Ovaj uređaj je najvažniji prodor ikada napravljen u kontroli emisije izduvnih gasova” izjavio je Tom Quinn, predsednik CARB, kada se 1977. godine na američkom tržištu pojavio Volvo 244 opremljen sa lambda sonda sistemom . Njegove reči važe do današnjeg dana. Lambda sonda je bila prvi efektan odgovor na pitanje smanjenja štetnih materija u izduvnim gasovima, posebno azotnih oksida (Nox), a princip na koji današnji automobili obavljaju isti posao je i dalje istovetan. Treba napomenuti da put do postizanja cilja nije bio lak.

Švedski Volvo je dao obećanje da će preuzeti korake ka smanjenju emisije štetnih gasova, kada su ljudi krajem šezdesetih počeli da razmišljaju na datu temu. Prvi koraci su bili povećanje količine i predgrevanje vazduha u usisnom sistemu, ali na taj način bilo je moguće smanjiti emisiju štetnih gasova u blagoj meri. To nije bilo ni blizu željnoj vrednosti smanjenja.
 
 
Već 1972. godine načinjen je prvi veliki korak, a zaslužan je bio Pehr Gyllenhammar, tada izvršni drektor AB Volvoa. On je na svetskoj konferenciji posvećenoj životnoj sredini u Stokholmu naglasio da su vozila u velikoj meri doprinela postepenom zagađenju životne sredine.

Ishod tog sastanka je bila deklaracija Volvoa koja se može primeniti i danas, a ona glasi:

Volvo ne želi da brani automobile, motorni saobraćaj uopšte, ni po koju cenu i u bilo kom kontekstu. Automobili su neizbežan deo svakodnevnog transportnog sistema. U interesu Volvoa je da automobili ne predstavljaju pretnju ili da čine štetu. Volvo je odgovoran ne samo da njegovi proizvodi namenjeni transportu funkcionišu dobro, već da oni takođe funkcionišu dobro u jednom širem kontekstu, u našoj životnoj sredini., a to je ono što mi danas zovemo održiva mobilnost.

Otprilike istovremeno inžinjeri Volvoa su otkrili da oksidirajući katalitički konvertori, koji su trebali biti tada predstavljeni, mogu pod određenim okolnostima biti usavršeni da predstavljaju mnogo efikasniju branu za ugljovodonike (HC), ugljenmonoksid (CO) i azotove okside (Nox).

Rad na razvoju ove mogućnosti, putem preciznog regulisanja odnosa vazduha i goriva u optimalnom odnosu za rad katalitičkog konvertora je počeo. Čovek koji je stajao iza lambda sonda projekta Volvoa, Stephen Wallman se seća:

“Komponente koje smo koristili za tehničko rešenje ovog projekta su već postojale, ali su korišćene u sasvim druge svrhe i na drugi način. Trik je bio u tome da ih povežemo u jedinstven sistem i nateramo ih da rade u automobilu sa benzinskim motorom”.

Ključ za rešenje kompletnog problema bio je uređaj veličine prsta.  

Lambda sonda je senzor koncentracije kiseonika koji se u engleskoj terminologiji označava kao OCS (Oxygen concetration sensor). Lambda sonda je pozicionirana u izduvnoj cevi između motora i katalitičkog konvertora. Katalitički konvertor može biti potpuno delotvoran u vršenju svoje funkcije jedino kod potpunog sagorevanja goriva, a ono je moguće samo kod tačnog odnosa vazduh/gorivo u usisnom sistemu.

Za potpuno sagorevanje jednog kilograma benzina potrebno je 14,7 kilograma vazduha i to je optimalan stehiometrijski odnos gorivo/vazduh (14,7 : 1). Inače, lambda sonda (senzor koncentracije kiseonika) ima istoimeni faktor (koeficijent) lambda, koji predstavlja odnos između stvarne i teoretski optimalne količine vazduha u smesi. Kad je koeficijent lambda manji od jedinice, smesa je bogata, a kad je veći, smesa je siromašna.

Da bi katalizator mogao dobro prečišćavati izduvne gasove, neophodno je održavati optimalan odnos vazduh/gorivo u usisnoj smesi, tj. održavati koeficijent lambda na jedinici. To se postiže posredno – merenjem sadržaja kiseonika u izduvnim gasovima. U izduvnim gasovima nakon sagorevanja zaostaje od 0,2 do 0,4 % kiseonika, što odgovara koeficijentu lambda od 0,95 do 1,05. Mereći sadržaj kiseonika posredno se meri i koeficijent lambda.

Osnovni elemenat lambda sonde je kruti elektrolit (keramika) od cirkonijevog oksida ZrO koji se nalazi između dve elektrode. Sadržaj kiseonika u izduvnim gasovima znatno menja napon na sondi. Merenjem napona lambda sonde meri se sadržaj zaostalog kiseonika u izduvnim gasovima, odnosno koeficijent lambda.

Zatim se šalje električni signal u upravljački sklop sistema za ubrizgavanje goriva, te se na temelju te informacije neprestano podešavaju ulazni parametri (odnos vazduh/gorivo) potrebni za potpuno sagorevanje goriva i dobar rad katalizatora.

O-Kat – skraćenica od  Oxidationskatalysator (nemački. oksidacijski katalizator) su katalitički konverteri koji se koriste za uklanjanje ugljenmonoksida i ugljovodonika iz izduvnih gasova, što se postiže hemijskom reakcijom – oksidacijom. Uz prisutnost katalizatora (platine, rodija ili paladija) ugljenmonoksid oksidira u ugljendioksid, a ugljovodonici u ugljendioksid i vodenu paru. Kancerogeni  azotovi oksidi se redukuju u inertni azot. Katalizatori su hemijski elementi koji olakšavaju i ubrzavaju hemijsku reakciju, ali ne učestvuju u njoj.

U ovim uslovima katalitički konvertor je bio efikasan u toj meri da je eliminisao 90 posto štetnih gasova formiranih u toku sagorevanja.

U Kaliforniji su 1977. godine predstavljeni novi standardi po pitanju emisije izduvnih gasova: ugljovodonici 0,41 gr/milji, ugljenmonoksid 9 gr/milji, azotni oksidi 1,5 gr/milji. U to vreme pomenuta norma po pitanju gasova je bila najstrožija u svetu. Volvo automobili sa opisanim katalitičkim konvertorom i lambda sondom su emitovali 0,2 gr/milji ugljovodonika, 3 gr/milji ugljenmonoksida i 0,2 g/milji azotovih oksida! To su bile neverovatno niske vrednosti emisije u to vreme. Niska emisija posebno azotovih oksida je bila senzacionalna i trud je bio nagrađen. Volvo je primio nagradu od veća Predsednika Kartera koje se bavilo zaštitom životne sredine.

Da bi lambda sonda radila ispravno, neophodni su joj bili ispravan katalitički konvertor i bezolovno gorivo, što je slučaj i danas. Kada je lambda senzor predstavljen bezolovno gorivo je bilo moguće kupiti samo u Severnoj Americi i Japanu. Danas ga je moguće naći svuda i nezamenljivo je kao i lambda i katalitički konvertor. Originalna lambda sonda je je usavršena u proteklih 30 godina da bi se redukovla emisija još više. Radi se o uređaju koji je pomerio čevečanstvo korak unapred. Bilo je moguće preduzeti još velikih broj malih koraka u usavršavanju ovog sistema tako da današnji Volvo automobili eliminišu 95 posto štetnih gasova. Trenutno je u centru pažnje smanjene nivoa karbon dioksida  (CO2) u izduvnim gasovima.

Nedavno Volvo je uveo i PremAir® sistem hlađenja koji smanjuje vrednost  ozona pri tlu tokom vožnje. PremAir® najbolje možemo opisati kao prevlaku na hladnjaku koja ozon pretvara u kiseonik dok vazduh prolazi kroz nju. Na visokim temperaturama gotovo 75% ozona pretvara se u čisti kiseonik.

“Iako je bilo zahteva koje smo morali ispoštovati, ambicija Volvoa i naša lična je bila da postignemo pravi proboj koji nas je i doveo do ovog više nego uspešnog rešenja” zaljučio je otac lambda sonde Stephen Wallman.

Turbo punjači i kompresori

 

Turbo? Ovaj termin se pored automobilizma i energetike koristi i u ostalim oblastima i često se koristi kao sinonim za nešto što je bolje, kvalitetnije, brže. Ovaj tekst objašnjava pojmove kao što su turbo kompresor, turbo punjač. U ovom tekstu poredimo ta dva pristupa povećanju snage i objašnjavamo pomoćne agregate kod oba sistema.
Turbo punjači i kompresori

Uvod

Kod ljudi koji se ne bave tematikom automobila pomen pojma “turbo” ih u tokom proteklih desetak godina uglavnom asocira na dizel motore. Takozvana “turbo” era se završila krajem 90-tih godina i od tada pa sve do sadašnjih dana turbo je stvarno ono što u velikoj većini slučajeva dobar nagoveštaj da je u pitanju dizel motor.

Prvo što moramo da naglasimo u ovom tekstu su razlike u nazivima: Turbo punjač se najčešće naziva samo turbo, a u engleskom je naziv koji se koristi “turbocharger”, dok se turbo kompresor može još nazivati i kompresor (Mercedes koristi ovaj naziv, npr.), punjač (G punjač – VW) dok se u engleskoj literaturi turbo kompresori nazivaju “supercharger”.

Turbine se koriste u energetici, avio i auto industriji i ono što ih razlikuju su naravno performanse obzirom da su im zadatci različiti, ali ono što ih svakako povezuje je isti izgled i princip rada. U auto industriji postoji nekoliko načina takozvanog “prehranjivanja” (termin koji se koristi u udžbenicima našeg Mašinskog Fakulteta) tj. dodatnog sabijanja više vazduha nego što prirodni pritisak omogućava. Motor sagoreva mešavinu vazduha i goriva, a taj vazduh ulazi u motor kroz usisnu granu motora povučen iz okolne atmosfere razlikom pritiska koju motor stvara. Da bi se snaga povećala količina vazduha koriste se veštački načini kao što su: turbo punjači, mahnički kompresori i tzv. “Ram Air” sistem. Ovaj tekst za temu ima rad turbo punjača i turbo kompresora dok ćemo princip rada “Ram Air” sistema objasniti u narednih nekoliko rečenica.
“Ram Air”

Ovaj sistem ili u slobodnom prevodu prirodna turbina je sistem koji koriste trkački automobili, a svodi se na jednostavan princip da se usisna grana (uz posredstvo odgovarajućih filtera) izvede direktno negde na spoljni deo automobila koji je okrenut smeru kretanja i time se povećanjem brzine automobila proporcionalno povećava pritisak vazduha koji ulazi u motor. Na primer F1 bolidi imaju usis direktno iznad glave vozača, GT automobili imaju “grbe” na haubi koje direktno ubacuju vazduh u motor automobila, a taj pritisak je direktno srazmeran brzini kretanja automobila.

Ferrari Maranello 575 – tipičan primer GT automobila sa “Ram Air” sistemom

Kako napraviti više snage
Četiri mogućnosti sa jednom zajedničkom osobinom

Kada se govori o načinima povećanja snage motora, zajednički cilj je, svakako, sagoreti što više smede goriva i vazduha u jedinici vremena. Postoje, praktično, četiri fundamentalno različita načina da se to ostvari.1. Napraviti efikasan motor tako da se što je moguće više vazduha i goriva unosi u njega kroz smanjenje restrikcija usisnih i izduvnih grana, umanjujući masu koja se rotira unutar motora, povećavajući energiju koju emituje svećica i finog štelovanja tajminga rada motora. Ovo su ciljevi svih „performans“ delova koji povećavaju snagu motora – filteri vazduha, programatori paljenja, izduvni sistemi itd. Ove modifikacije su veoma popularne zato što dodaju snagu, izgledaju dobro i zvuče dobro. Takođe one se mogu raditi nezavisno što je dobro za budžet. Problem ovakvih modifikacija je što donose male dobitke, a često su ti dobitci u snazi beznačajni i ne mogu se osetiti. Današnji moderni motori su po ozlasku iz fabrike prilično dobro podešeni i nisu opremljeni previše restriktivnim usisnim ili izduvnim granama koje bi umaljile potrošnju goriva. Drugim rečima, ako tražite umerene dobitke snage, potrebno je ići dublje od ovakvih modifikacija koje za cilj imaju samo blago povećanje efikasnosti motora.

2. Motoru se može povećati snaga tako što ćete ga ubrzati tj. motor će se okretati na većem broju obrtaja. Ova tehnika je efikasna kada se insistira na zadržavanju male mase i kompaktnosti motora, a istorvremeno se traži veća snaga. Naravno svi trkački automobili imaju motore koji postižu visoke brojeve obrtaja. Jedina mana ovog pristupa je da ako želite da omogućite motoru da se okreće na jako visokom broju obrtaja potrebni su jako kvalitetni (i skupi) delovi koji će moći da izdrže rad u takvim uslovima. Povećani broj obrtaja značajno povećava trošenje materijala što umanjuje pouzdanost motora i smanjuje mu rok trajanja. Većina normalnih automobila ima crveno polje između 6000-7000 obrtaja baš iz tog razloga da se poveća rok trajanja motora. Okretanje motora brže nego što je predviđeno je rizik za motor.

3. Još jedan način za povećanje snage motora je veoma očigledan. Korišćenje većeg motora. Veći motori mogu da sagore više vazduha i goriva i samim tim generišu više snage. Naravno, da je to tako jednostavno svi bi pod haubama imali V12 motore. Povećanje motora se lako može izvesti razbušivanjem (povećanjem prečnika) cilindara i stavljanjem većih klipova, ili povećanjem hoda klipa, ali takva povećanja motora su veoma ograničena obzirom da konstrukcija motora ne dozvoljava preveliko povećanje tih parametara. Da bi se motor značajno povećao potrebno je imati fizički veći motor sa više cilindara, ali on donosi veće dimenzije, veću težinu i manje efikasnost potrošnje goriva.

4. Poslednji način za povećanje snage je unošenje veće količine smese goriva i vazduha pre njenog sagorevanja, a rezultat snaga koja je adekvatna klasičnom motoru sa većom zapreminom. Problem sa ovom tehnikom je da nije dovoljno reći da motor treba da usisa više smese, pritisak je uslovljen atmosferskim pritiskom od 1 bar na 0m nadmosrske visine. Kako se visina povećava vazduh postaje sve ređi i time motor ima sve manje snage. Tu na scenu stupaju turbo kompresori ili turbo punjači. Kompresor, kao što mu ime kaže, kompresuje vazduh i gorivo u komoru cilindra pod pritiskom većim od atmosferskog i time praktično dobija efekat povećanja snage kao da je motor veće zapremine nego što jeste. Drugo mali motor zadržava sve svoje osobine – lagan, kompaktan, efikasno troši gorivo, a opet uz pomoć kompresora daje veću snagu. Dodatno se može kontrolisati kada kompresor radi tako da, ukoliko ne pritiskate pedalu gasa do poda, motor radi sa svojim normalnim performansama i što je još važnije troši jako malo goriva.

Realno postoji daleko više od gore navedenih četiri načina povećanja snage, ali ovi načini su najkonvencionalniji. Možete, na primer, koristiti kaloričnije gorivo što je ideja vodilja sistema koji koriste Nitro Oksid – poznatiji kao NOS ili drugih Top Fuel sistema.

Zlatna “turbo” era

Turbo punjači su po prvi put predstavljeni u velikoserijskom putničkim automobilu ranih 1960-tih godina. Model je bio Chevrolet Corvair kojeg je proizvodio General Motors – GM. Automobil je imao lošu reputaciju zbog toga što je imao jako loše performanse pri malim brzinama, a ogroman turbo lag je tečnu vožnju činio u ovom automobilu praktično nemogućom.

Turbo lag je ono što je automobilskoj industriji pravilo veliki problem i sprečavalo da se automobili koji su u to doba koristili turbo punjač proglase praktičnima. Turbo punjači su se u to doba obilato koristili u auto sportu – počevši od ikone BMW-a 2002 turbo modela pa do “endurans” trka i na kraju same Formule 1, međutim vozači trkačkih automobila su uspevali da se izbore sa prilično neugodnim turbom motorima iz tog doba, ali to nije bilo rešenje za svakodnevnu vožnju i normalnog vozača. Turbine iz tog doba su bile veoma velike i teške pa su samim time bile veoma inertne. Takve turbine se nisu mogle zavrteti ispod 3500 obrtaja, pa je opseg rada motora do 3500 obrtaja bio veoma slab obzirom da je u doba kompresija turbo motora bila 6,5:1 kako bi se izbeglo pregrevanje glave cilindara.

Porše je pionir kada se govori o relativno praktičnim turbo automobilima. 1975. godine se pojavio model 911 Turbo 3.0 koji je koristio rešenje do koga su došli Porešovi inženjeri. Mehanizam se zasnivao da se koriste takozvane “recirkulišuća” creva koja su omogućaval turbini da se zavrti pre početka rada pa se time umanjivao lag. Model iz 1978. Porše 911 Turbo 3.3 koji je nasledio model 3.0 turbo je uneo još jedan novitet – interkuler koji je dodatno umanjio lag i doprineo povećanju snage motora.

Tokom 80-tih godina tehnologija proizvodnje turbo punjača je evoluirala u pravcu kultivisanijeg rada. Tokom zadnjih godina se kod automobila sa turbo punjačima koristi još jedan sistem umanjenja turbo laga – elektronska kontrola pritiska turbine. Rani turbo punjači su koristili primitivna mehanička rešenja sa “vejst gejt” ventilom kako bi izbegli prevelik pritisak i preveliku brzinu turbine. Kasnih 80-tih i početkom 90-tih godina sa razvojem elektronike je omogućena fina kontrola pritiska turbine pa tim sistemom omogućeno da, na primer, turbo isporučuje 1,4 bar ispod 3000 obrtaja, 1,6 bar od 3000 do 4500 obrtaja, a 1,8 bar iznad 4500 obrtaja. Tako finom kontrolom je postugnut linearan rast snage što je doprinelo tečnom osećaju u vožnji.

Kako radi turbo punjač?
 
Uprošćena shema motora sa turbo punjačem
Air filter – filter vazduha, Turbocharger – turbo punjač, Intake – usisna grana, Exaust – izduvna grana

Turbo punjači su jedan od nekoliko sistema za dodatno unošenje vazduha u motor tj. one kompresuju (smanjuju zapreminu) vazduha koji ulazi u motor. Prednost smanjivanja zapremine vazduha koji ulazi u motor kroz usisnu granu je da dozvoljava motoru da ima više vazduha u cilindru, a samim tim više goriva treba da bi se napravila odgovarajuća smesa. Samim time, dobija se više snage iz svake eksplozije unutar svakog cilindra motora. Motor sa turbo punjačem po definiciji proizvodi više snage od motora koji nema turbo punjač, a to značajno poboljšava odnos snaga / težina motora.
[img]://img247.imageshack.us/img247/7039/turbo3px1.jpg[/img]

Da bi turbo punjači postigli odgovarajuću kompresiju, turbo punjač koristi izduvne gasove motora da bi zavrteo svoju turbinu koja opet ubrzava unos vazduha. Turbina turbo punjača se obično vrti od 100 do 150 hiljada obrtaja u minuti, a kako je direktno povezana na izduvnu granu motora temperature na kojima turbina radi su veoma visoke.

Osnove:
Najlakši način da dobijete više snage iz motora je da povećate količinu vazduha i goriva koje motor može da sagori. Jedan od načina je da se poveća zapremina bilo povećanjem zapremine cilindara ili dodavanjem cilindara. Ako taj način nije moguć ili isplativ, turbo punjač je jednostavnije i kompaktnije rešenje.

Turbo punjači omogućavaju motoru da sagori više goriva i vazduha tako što u postojeću zapreminu motora sabijanjem ubacuje više goriva i vazduha. Mera za sabijenost je u barima (metrički sistem) ili psi (kolonijalni sistem – funte po kvadratnom inču).
1bar = 14,503 psi tj. 1psi = 0.068947 bar.

Tipičan pritisak turbina je obično oko 6-8 psi tj. oko 0,5 bar što znači da se u motor ubacuje 50% više vazduha (1 bar je normalan pritisak, a kada dodate 0,5 bar pritiska pomoću turba dobijate 1,5 bar tj. 50% povećanja pritiska). Za očekivati je da će i snaga skočiti za 50%, međutim sistem nije 100% efikasan tako da su povećanja snage u okviru 30 – 40% u zavisnosti od konstrukcije. Deo neefikasnosti potiče od toga što vazduh koji pokreće turbinu nije „besplatan“, tj. vazduh koji turbina pozajmljuje iz izduvne grane motora ima svoju cenu. Cena je da motor mora da uloži više energije da izbaci vazduh obzirom da na izlazu postoji otpor okretanja turbine koji taj izdvuni gas mora da savlada.

Turbine na visini

Turbo punjači pomažu na velikim visinama gde je vazduh dodatno razređen. Normalni motori će na takvom razređenom vazduhu imati manje snage na raspolaganju zato što će manje vazduha biti u cilindru, dok se kod motora sa turbo punjačem ta razlika daleko smanjuje (i dalje postoji pad snage, samo je manji) zato što će turbina iako je vazduh ređi ugurati daleko više tog ređeg vazduha zato što je on lakši pa će time malo kompenzovati gubitak gustine vazduha.

Stariji automobili sa karburatorom automatski povećavaju dotok goriva da bi parirali većem dotoku vazduha u motor, dok moderni automobili sa elektronskim ubrizgavanjem goriva takođe to rade, ali će to povećanje dotoka goriva biti srazmerno podatku koji šalje protokomer vazduha koji meri kao što mu i ime kaže koliko je vazduha ušlo u motor pa će odnos vazduha i goriva kod takvih motora biti uvek veoma blizu idealnom. Ukoliko turbina radi na visokom pritisku i elektronsko ubrizgavanje nema dovoljno jaku pumpu koja može da dopremi potrebnu količinu goriva u cilindre ili softver koji upravlja ubrizgavanjem goriva neće da dozvoli toliku količinu goriva ili brizgaljke za unos goriva u cilindar nemaju dovoljno veliku protočnu moć motor neće moći da maksimalno iskoristi turbo punjač pa će nostali delovi sistema za ubrizgavanje goriva morati dodatno da se modifikuju da iskoriste pun potencijal turbo punjača.

Način funkcionisanja turbo punjača:

Turbo punjač je pričvršćen na izduvnu granu motora, a ti izduvni gasovi okreću turbinu. Turbina je osovinom povezana sa kompresorom koji se nalazi između filtera za vazduh i usisne grane motora i taj kompresor sabija vazduh koji se ubacuje u cilindre. Izduv iz cilindara prolazi preko lopatica turbine koje okreću samu turbinu i što više vazduha prolazi kroz lopatice, to se turbina brže okreće. Sa druge strane osovine na koju je prikačena turbina nalazi se kompresor koji pumpa vazduh u cilindre. Kompresor je tzv. Centrifugalna pumpa – uvlači vazduh u centru svojih lopatica i gura ga dalje kako se okreće. Da bi izdržala 150000 rotacija u minuti osovina turbine mora biti pričvršćena veoma pažljivo. Većina ležaja bi pri ovoj brzini okretanja verovatno eksplodirala pa tako turbo punjači koriste fluid (ulje) koje je u veoma tankom sloju između lagera i osovine i pomoću koga se kuglagerima po kojima se osovina kreće samim tim smanjuje trenje, a istovremeno hladi osovinu i druge delove turbo punjača.
 
Izgled turbo punjača
Sa leve strane je kompresor koji sabija vazduh, a sa desne strane je turbina koja pomoću izduvnih gasova
pokreće kompresor pomoću osovine koja ih povezuje.

 
Sistem rada turbo punjača

 
Pera impelera na turbini

Problemi koji se javljaju kod turbo punjača

1.Previše pritiska
Kada se vazduh sabija u cilindre pod pritiskom koji pravi turbo punjač koje zatim klip dodatno sabija postoji povećana opasnost od samozapaljivanja smeše. Samozapaljivanje smeše se pojavljuje kada se smeša vazduha i goriva kompresuje preko kritične tačke čime dolazi do detonacije u cilindru iako svećica nije zapalila smešu što može oštetiti motor. Automobili sa turbo punjačima obično koriste visoko oktanska goriva (koja imaju veću otpornost ka samozapaljivanju) da bi izbegli ovaj problem. Problem se takođe može rešiti smanjenjem kompresije motora što naravno dovodi i do smanjenja snage motora.

2. Turbo Lag
Jedan od najlakše uočivih problema turbo punjača je da oni rade istog tretnutka kada pritisnete pedalu gasa, već je potrebno da motor obezbedi odgovarajuću količinu gasova, a onda je potrebno još nekoliko trenutaka da se turbina zavrti da bi počela sa radom što ima za rezultat da automobil naglo dobije snagu tek nekoliko trenutaka po pritiskanju pedale gasa. Jedan od načina za smanjenje ovog efekta (lag = zadrška prim.prev.) je da se smanji intertnost pokretnih delova, tj. umanjenje njihove težine. Ovo omogućava turbini i kompresoru vazduha da se brzo zavrte i počnu ranije sa povećanjem snage motora.

3. Mali ili veliki turbo punjač?
Siguran način za smanjenje inertnosti turbine i kompresora vazduha je da se turbo punjač načini što manjim. Mali turbo punjač će daleko brže obezbediti pritisak i na manjem broju obrtaja motora, ali neće biti sposoban da obezbedi dovoljno pritiska kada se motor zavrti i kada su mu potrebne velike količine vazduha da bi zadržao potreban pritisak. Dodatna opasnost je da se mala turbina na visokom broju obrtaja motora može vrteti prebrzo što može dovesti do njenog oštećenja.
Veliki turbo punjač može da obezbedi veliki pritisak na visokom broju obrtaja motora, ali je on težak i inertan te mu je potrebno više vremena da ubrza svoju tešku turbinu i kompresor vazduha.
… i njihova rešenja

Ventil za ispuštanje viška vazduha (vejst gejt – eng. wastegate)
Većina automobilskih turbo punjača imaju ventil za ispuštanje viška vazduha koji omogućava manjim turbo punjačima da se ne vrte previše brzo na visokom broju obrtaja, a istovremeno time što su mali umanjuju lag. Ventil za ispuštanje viška vazduha omogućava izduvnim gasovima da ne prelaze preko lopatica turbine. Ventil „oseća“ promenu pritiska i ako pritisak pređe određenu granicu to je indikator da se turbina okreće prebrzo i tada ventil ispušta deo izduvnih gasova tako da ne prelaze preko turbine i time omogućava turbini da uspori.
 
Wastegate ventili – desno se nalazi fabrčki, levo je visoko performansni

Lageri
Neki turbo punjači koriste bolje lagere umesto umesto lagera u tečnosti kao oslanjanje osovine turbine. To, naravno, nisu obični lageri – to super precizno napravljeni lageri, a materijali od kojih se prave su posebne legure koje mogu da izdrže velike brzine i temperature koje proizvodi turbina. Oni omogućavaju da se osovine turbine zavrte sa manje otpora nego uz pomoć korišćenja tečnosti umesto lagera koji se koriste u većini turbo punjača. Oni takođe omogućavaju korišćenje manjih i lakših osovina što opet pomaže turbo punjaču da se brže pokrene i time dodatno smanji turbo lag.
Keramičke lopatice na turbinama
Keramičke lopatice na turbinama su lakše nego one od čelika koje se najčešće koriste na turbo punjačima. Naravno ovo opet omogućava brži start turbine što opet umanjuje lag. Lopatice od keramike se recimo koriste kod IHI turbine na Mitcubishi Lanceru EVO.
interkuleri
Kada je vazduh kompresovan (po zakonima termodinamike) on se greje, a kada se vazduh greje on se širi. Tako jedan deo od povećanja pritiska turbo pujnača je rezultat zagrevanja vazduha pre nego on uđe u motor. Da bi se povećala snaga motora, cilj je povećati broj molekula vazduha u motor, a ne neophodno povećati pritisak vazduha. Interkuler je dodatna komponenta sistema koja liči na hladnjak, samo što vazduh prolazi kako kroz interkuler tako i oko njega. Vazduh koji treba da uđe u motor prolazi kroz interkuler i time se hladi, dok se spoljašnji vazduh pomoću ventilatora duva preko interkulera. Interkuler povećava snagu automobila tako što hladi vazduh pod pritiskom koji izlazi iz turbine pre nego što uđe u motor. To znači da turbo punjač koji radi na 0,5 bar pritiska uz pomoć interkulera ubacuje hladan vazduh na 0,5 koji sadrži daleko više molekula vazduha obzirom da hladniji vazduh je gušći nego topliji.

Dvostruki (Twin) Turbo – Paralelni ili sekvencijalni?

Korišćenje duplih turbo punjača je pitanje željene efikasnosti i mogućnosti da se oni negde fizički i postave. Za veće motore, recimo preko 2,5l, je bolje koristiti 2 manja turbo punjača umesto jednog velikog – kao što je to Porše radio na ranim modelima 911 Turbo. Kada su u pitanju V ili bokser konstrukcija motora takođe je poželjno koristiti dupli turbo zato što jedan turbo opslužuje jednu stranu motora i time se skraćuje dužina creva turbo punjača što umanjuje lag. Neki motori koji imaju dupli turbo imaju takav sistem koji izduvne gasove sa jedne turbine vode ka drugoj turbini i to je takozvani koncept “povratne sprege” koja obezbeđuje balansirani dovod snage u obe strane motora. Motori koji imaju paralelni dupli turbo su motori koji imaju po jednu turbinu za svaku stranu motora. S druge strane sekvencijalni dupli turbo je dizajniran da ubrza odgovor turbine i dodatno umanji lag. Takav sistem radi kako mu ime kaže sekvencijalno tj. na malom broju obrtaja radi mala turbina, a veća nije aktivna i time se postiže brz odgovor na srednjem broju obrtaja. Kada se količina izduvnih gasova dovoljno poveća uključuje se i druga turbina koja na dodatno povećava pritisak. Ono što je mana kod sekvencijalnih duplih turboa je velika količina creva koja je potrebna da bi sistem radio (izduvni gasovi moraju da dopru do obe turbine posebno kao i izlazi iz obe turbine moraju doći do usisnih grana motora) i samim tim je u poslednje vreme napuštena tehnika od strane proizvođača. Auotomobili koji koriste ovakav sistem turbina su Porše 959, Mazda RX7 treće generacije, Tojota Supra i Subaru Legasi.

Turbo niskog pritiska (Light Pressure Turbo – LPT)
Poslednjih nekoliko godina je ovo veoma popularan način korišćenja turbina. Saab kao pionir u ovoj oblasti je prvi put iskoristio LPT u masovnoj proizvodnji 1992. godine kada je prikazao, tada, novi model Saab 9000 2,3l Turbo Ecopower. Taj motor je imao samo 170KS, tj. 20KS više u odnosu na identiačan motor bez turbo punjača, a 30KS manje od standardnog 2,3l Turbo motora. Dok su ostali proizvođači želeli što veću cifru snage ili obrtnog momenta, Saab je pametno zaključio da iako je takav motor slabiji od konkurentskih, uz pomoć malog turba motor ima solidan obrtni momenat što omogućava dobro ubrzanje, ali je daleko lakši za vožnju obzirom da je turbo lag praktično nepostojeći, a odogovor na komandu gasa kao i kod atmosferskih motora. Saab je zbog bolje krive obrtnog momenta produžio odnos menjača pa je time dodatno uspeo i da umanji potrošnju i svede je na manje od atmosferskog motora iste veličine.

U prošlosti, loše vozne osobine i visoka potrošnja goriva su sprečavale da se turbo punjači koriste u automobilima koji su namenjeni širokom krugu ljudi. Proteklih godina taj trend je potpuno drugačiji zbog potražnje za većim prostorom i komforom što je dovelo do povećanja težine automobila pa da bi se perfromanse zadržale na prethodnom nivou potrebno je više snage, a za to se ili ugrađuje veći motor ili se dodaje turbo punjač. Kada u igru uđe i cena tj. želja za što manjim troškovima svakog proizvođača turbo ima nesumnjivu prednost i to je svakako tendencija koja će u narednim godinama biti sve više izražena. Masovno korišćenje turbina na dizel motorima u proteklih 15 godina je donelo veliki broj inovacija ut istovremeno smanjenje cene turbina, pa se proizvođači u poslednje vreme sve češće okreću turbo motorima. Na primer novi Opel ima 2.0 Turbo motor, a u najavi je i 1,6l Turbo. Alfa Romeo u najavi ima nekoliko motora koji koriste Turbo i Twin Turbo. VW koncern je pored 1,8 Turbo motora u gamu uvrstio i 2,0 Turbo, itd.

Takođe, dužni smo i da nabrojimo nekoliko većih proizvođača turbo punjača: Garett, KKK i IHI.

G punjač – Nastanak i razvoj

Obzirom da su Vokswagen-ov modeli Polo G40, Golf 2 G60 kao i Corrado G60 bili veoma popularni i svojevrsne ikone sa početka 90-tih, evo kratkog opisa kako G-punjač radi.

U vreme kad je u modi svih proizvođača automobila bila ugradnja turbo punjača, vodeći čovek tadašnjeg Volkswagenovog Odeljenja za razvoj, preuzeo je osnovnu ideju francuza L. Creuxa o punjaču u obliku zavojnice. Uvdeo je mogućnosti koje nudi ovakav punjač u odnosu na tadašenje alternativu – turbo punjačima. Prvi pokušaji s spiralnim punjačem obećavali su rešenja postavljenih zahteva šefova iz VW-a: spontan odaziv u donjem dijelu obrtaja, snaga raspoloživa duž ceelog područja obrtaja, smanjena buka, idealno za masovnu proizvodnju, upotrebljivo za različite koncepte motora.

1987. godine, počinje maloserijska proizvodnja motora s G-punjačem u VW Polo GT G40 sa snagom od 115 KS. Naziv G40 je nastao od oblika i, jer dužina zavojnice u “ubrzavajućem pužu” (nalik na G) ima i širinu u radnom delu punjača, koja iznosi 40 mm.

1988. godine slijedi ugradnja G60 punjača sa većim “ubrzavajućim pužem” (60 mm široko radno područje) u VW Corrado 1,8 sa 160 KS. U istoj godini je proizveden i VW Golf Rallye s G60 motorm i pogonom na sve točkove, u otprilike 5000 komada, prvenstveno zbog homologacije za rally trke, ali zbog restrikcija koje su se zahtevale na usisu, zaustavljena su službena učešća na trkama, te je tako oslobođen prostor za Audi Quattro. 1989. godine G60 se ugrađuje u VW Passat GT Syncro, a godinu poslije i u VW Golf GTI G60.

Najsnažniji motor pogonjen G-punjačem je proizveden od strane VW Motorsporta, 1,8 16v G60 snage 210 KS i obrtnim momentom od 250 Nm pri 5000 obrtaja u minuti, a isporučivan je u verzijama VW Golfa II sa petorim vratima.

I u današnje vrijeme tehnika G-punjača odoleva zubu vremena, iako je Volkswagen već odavno prestao s njegovom proizvodnjom. Glavni razlozi za to su relativno visoki troškovi proizvodnje i ne tako zanemarujuća mogućnost kvarova (snaga vozila se često precjenjivala od strane vozača). Ono što je još zanimljivo je da G punjač prati prilično loša reputacija kao kvarjivog uređaja, a kako Nemački VW sajtovi kažu krivac je loše zamišljena osovina oko koje se okreće kaiš za pokretanje punjača i preporučuju ugradnju druge koja rešava bukvalno sve probleme.

G punjač – Tehnički podaci

G60 je mehanički pogonjen punjač (kompresor) koji je ime dobio po obliku slova G, a 60 označava širinu spiralnih propelera izražena u mm. U spiralnom kompresoru, usisani vazduh iz motora prolazi kroz kučište, nalik pužu, gdje se sabija do 0,7 bara. Ovaj kompresor, koji sam troši i do 18 KS, pogonjen je zupčastim remenom. Velika prednost mu je snaga duž svih brojeva okretaja. A slabosti? Kada motor dosegne 5800 o/min, mala spirala u kompresoru se vrti na 11 000 okr/min, te je to granično područje na kojem počinju kritične vibracije u kompresoru te to može biti kobno za cijeli motor. Inače, za G60 motore, najveći obrtni moment je na 5600 obrtaja u minuti.
Turbo ili kompresor

To je jedno od češćih pitanja i koja, na žalost, nemaju jednostavan odgovor. Tačnije odgovor jeste jednostavan, ali on glasi: „zavisi“. Ovaj deo teksta će prednosti i mane kompresora navesti i pomoći Vam da sagledate u kojim slučajevima je bolje primeniti odgovarajući sistem.

Sličnosti
I kompresori i turbo punjači su sistemi koji omogućavaju usis vazduha pod pritiskom i samim tim im je cilj isti – da što više sabiju vazduha u cilindre motora u odnosu na ono što atmosferski pritiskak normalno omogućva. Prednost je što će motor tada moći da izgori više goriva u jednom ciklusu sagorevanja, a to dovodi do povećanja snage. Iz tog razloga turbo kompresori i turbo punjači omogućavaju 40 – 100 % povećanja snage (u zavisnosti od pritiska kojim se sabija vazduh) nego atmosferski motori iste zapremine.

Cena
Cena kompresora i turbo punjača za isti motor su praktično iste pa cena nie igra nikakvu ulogu u izboru jednog od ova dva sistema.

Lag
Nedostatak laga je jedna od najvećih prednosti turbo kompresora u odnosu na turbo punjače. Turbo punjači su pogonjeni izduvnim gasovima pa se zbog toga pojavljuje ta zadrška dok se impeler ne zavrti do brzine koja omogućava odgovarajuću kompresiju vazduha Turbo punjači se pogone kaišem koji je sa druge strane zakačen na radilicu i time praktično rade od najmanjeg broja obrtaja.

Efikasnost
Ovo je najveća prednost turbo punjača. Turbo punjači su u principu ekonomičniji zato što se pokreću pomoću izduvnih gasova koji su da kažemo, besplatni tj. ne služe ničemu, dok kompresor koristi snagu radilice i time umanjuje snagu koja je dostupna za pokretanje automobila. Turbo punjači ipak nisu potpuno efikasni zato što okretanje lopatica turbine pravi podpritisak na izduvnoj grani tako da motor ima određn otpor kada izbacuje izduvne gasove.
Toplota
Kako je turbo punjač montiran na izduvnu granu koja je uvek veoma zagrejana time se samo kućište turbine greje, a time se dodatno vazduh koji turbo sabija dodatno greje što negativno utiče na gustinu kompresovanog vazduha pa se često koristi interkuler kako bi se taj vazduh ohladio, a time se komplikuje instalacija sistema. Kod kompresora centrifugalni kompresor generiše veoma hladan kompresovan vazduh pa ne postoji potreba za montiranjem interkulera za pritiske ispod 0,8 bar, dok u slučaju korišćenja roots kompresora kompresovani vazduh ima daleko veću temperaturu pa je potrebno koristiti interkuler i pri malim pritiscima.

Udar snage
Kako turbo punjači imaju zadršku (lag) postoji tzv. udar snage kada se vejstgejt otvori tj. kada turbo punjač proradi. Ovaj udar je veoma štetan po automobil, a posebno po nosače motora, ogibljenje i sistem za upravljanje i može da učini automobil teško upravljivim. Povratni pritisak Turbo punjači svojom montažom na izduvnoj grani prave parazitski povratni pritisak u samoj grani i time motor troši više energije da bi izbacio izduvne gasove za onoliko koliko je potrebno da se taj parazitski pritisak savlada. Taj pritisak umanjuje efikasnost turbo punjača.

Buka
Turbo punjači su u principu tiši od kompresora, a položaj turbine na izduvnoj grani može samo da umanju količinu buke koju generiše motor i time utišavaju motor. Turbo kompresori imaju specifičan zvuk, a pogotovu centrifugalni i mogu biti veoma glasni (naravno većina vozača ovaj zvuk naprosto obožava).

Pouzdanost
Kompresori su, generalno, daleko pouzdaniji od turbo punjača. Kada se automobil (i motor) ugasi vreli motor i izduvna grana mogu da visokom temperaturom oštete ulje koje je unutar turbo punjača koje pšodmazuje lagere. Dodatno, veliki broj obrtaja turbine (do 150000 obrtaja u minuti) može da dovede do problema sa ležajevima u turbini ida time skrati životni vek turbo punjača.

Maksimalna snaga
Turbo punjači su slavu stekli zato što imaju mogućnost da se okreću veoma brzo i time generišu fantastično visoke pritiske kompresije (preko 2 bar-a) i time naravno prave daleko više snage nego turbo kompresori.

Mogućnost poboljšanja performansi samih turbo punjača/kompresora – tjuniranje
Turbo punjači zbog svoje kompleksnosti i zavisnosti od izduvnih gasova su zloglasno teški za modifikacije. Kompresori, sa druge strane, su po tom pitanju lakši i dodatno zahtevaju samo manje intervencije na sistemima za ubrizgavanje goriva i paljenje. 

 

Još nešto o Turbo punjačima i kompresorima

 

Turbo? Ovaj termin se pored automobilizma i energetike koristi i u ostalim oblastima i često se koristi kao sinonim za nešto što je bolje, kvalitetnije, brže. Ovaj tekst objašnjava pojmove kao što su turbo kompresor, turbo punjač. U ovom tekstu poredimo ta dva pristupa povećanju snage i objašnjavamo pomoćne agregate kod oba sistema.
Turbo punjači i kompresori

Uvod

Kod ljudi koji se ne bave tematikom automobila pomen pojma “turbo” ih u tokom proteklih desetak godina uglavnom asocira na dizel motore. Takozvana “turbo” era se završila krajem 90-tih godina i od tada pa sve do sadašnjih dana turbo je stvarno ono što u velikoj većini slučajeva dobar nagoveštaj da je u pitanju dizel motor.

Prvo što moramo da naglasimo u ovom tekstu su razlike u nazivima: Turbo punjač se najčešće naziva samo turbo, a u engleskom je naziv koji se koristi “turbocharger”, dok se turbo kompresor može još nazivati i kompresor (Mercedes koristi ovaj naziv, npr.), punjač (G punjač – VW) dok se u engleskoj literaturi turbo kompresori nazivaju “supercharger”.

Turbine se koriste u energetici, avio i auto industriji i ono što ih razlikuju su naravno performanse obzirom da su im zadatci različiti, ali ono što ih svakako povezuje je isti izgled i princip rada. U auto industriji postoji nekoliko načina takozvanog “prehranjivanja” (termin koji se koristi u udžbenicima našeg Mašinskog Fakulteta) tj. dodatnog sabijanja više vazduha nego što prirodni pritisak omogućava. Motor sagoreva mešavinu vazduha i goriva, a taj vazduh ulazi u motor kroz usisnu granu motora povučen iz okolne atmosfere razlikom pritiska koju motor stvara. Da bi se snaga povećala količina vazduha koriste se veštački načini kao što su: turbo punjači, mahnički kompresori i tzv. “Ram Air” sistem. Ovaj tekst za temu ima rad turbo punjača i turbo kompresora dok ćemo princip rada “Ram Air” sistema objasniti u narednih nekoliko rečenica.
“Ram Air”

Ovaj sistem ili u slobodnom prevodu prirodna turbina je sistem koji koriste trkački automobili, a svodi se na jednostavan princip da se usisna grana (uz posredstvo odgovarajućih filtera) izvede direktno negde na spoljni deo automobila koji je okrenut smeru kretanja i time se povećanjem brzine automobila proporcionalno povećava pritisak vazduha koji ulazi u motor. Na primer F1 bolidi imaju usis direktno iznad glave vozača, GT automobili imaju “grbe” na haubi koje direktno ubacuju vazduh u motor automobila, a taj pritisak je direktno srazmeran brzini kretanja automobila.

Ferrari Maranello 575 – tipičan primer GT automobila sa “Ram Air” sistemom

Kako napraviti više snage
Četiri mogućnosti sa jednom zajedničkom osobinom

Kada se govori o načinima povećanja snage motora, zajednički cilj je, svakako, sagoreti što više smede goriva i vazduha u jedinici vremena. Postoje, praktično, četiri fundamentalno različita načina da se to ostvari.1. Napraviti efikasan motor tako da se što je moguće više vazduha i goriva unosi u njega kroz smanjenje restrikcija usisnih i izduvnih grana, umanjujući masu koja se rotira unutar motora, povećavajući energiju koju emituje svećica i finog štelovanja tajminga rada motora. Ovo su ciljevi svih „performans“ delova koji povećavaju snagu motora – filteri vazduha, programatori paljenja, izduvni sistemi itd. Ove modifikacije su veoma popularne zato što dodaju snagu, izgledaju dobro i zvuče dobro. Takođe one se mogu raditi nezavisno što je dobro za budžet. Problem ovakvih modifikacija je što donose male dobitke, a često su ti dobitci u snazi beznačajni i ne mogu se osetiti. Današnji moderni motori su po ozlasku iz fabrike prilično dobro podešeni i nisu opremljeni previše restriktivnim usisnim ili izduvnim granama koje bi umaljile potrošnju goriva. Drugim rečima, ako tražite umerene dobitke snage, potrebno je ići dublje od ovakvih modifikacija koje za cilj imaju samo blago povećanje efikasnosti motora.

2. Motoru se može povećati snaga tako što ćete ga ubrzati tj. motor će se okretati na većem broju obrtaja. Ova tehnika je efikasna kada se insistira na zadržavanju male mase i kompaktnosti motora, a istorvremeno se traži veća snaga. Naravno svi trkački automobili imaju motore koji postižu visoke brojeve obrtaja. Jedina mana ovog pristupa je da ako želite da omogućite motoru da se okreće na jako visokom broju obrtaja potrebni su jako kvalitetni (i skupi) delovi koji će moći da izdrže rad u takvim uslovima. Povećani broj obrtaja značajno povećava trošenje materijala što umanjuje pouzdanost motora i smanjuje mu rok trajanja. Većina normalnih automobila ima crveno polje između 6000-7000 obrtaja baš iz tog razloga da se poveća rok trajanja motora. Okretanje motora brže nego što je predviđeno je rizik za motor.

3. Još jedan način za povećanje snage motora je veoma očigledan. Korišćenje većeg motora. Veći motori mogu da sagore više vazduha i goriva i samim tim generišu više snage. Naravno, da je to tako jednostavno svi bi pod haubama imali V12 motore. Povećanje motora se lako može izvesti razbušivanjem (povećanjem prečnika) cilindara i stavljanjem većih klipova, ili povećanjem hoda klipa, ali takva povećanja motora su veoma ograničena obzirom da konstrukcija motora ne dozvoljava preveliko povećanje tih parametara. Da bi se motor značajno povećao potrebno je imati fizički veći motor sa više cilindara, ali on donosi veće dimenzije, veću težinu i manje efikasnost potrošnje goriva.

4. Poslednji način za povećanje snage je unošenje veće količine smese goriva i vazduha pre njenog sagorevanja, a rezultat snaga koja je adekvatna klasičnom motoru sa većom zapreminom. Problem sa ovom tehnikom je da nije dovoljno reći da motor treba da usisa više smese, pritisak je uslovljen atmosferskim pritiskom od 1 bar na 0m nadmosrske visine. Kako se visina povećava vazduh postaje sve ređi i time motor ima sve manje snage. Tu na scenu stupaju turbo kompresori ili turbo punjači. Kompresor, kao što mu ime kaže, kompresuje vazduh i gorivo u komoru cilindra pod pritiskom većim od atmosferskog i time praktično dobija efekat povećanja snage kao da je motor veće zapremine nego što jeste. Drugo mali motor zadržava sve svoje osobine – lagan, kompaktan, efikasno troši gorivo, a opet uz pomoć kompresora daje veću snagu. Dodatno se može kontrolisati kada kompresor radi tako da, ukoliko ne pritiskate pedalu gasa do poda, motor radi sa svojim normalnim performansama i što je još važnije troši jako malo goriva.

Realno postoji daleko više od gore navedenih četiri načina povećanja snage, ali ovi načini su najkonvencionalniji. Možete, na primer, koristiti kaloričnije gorivo što je ideja vodilja sistema koji koriste Nitro Oksid – poznatiji kao NOS ili drugih Top Fuel sistema.

Zlatna “turbo” era

Turbo punjači su po prvi put predstavljeni u velikoserijskom putničkim automobilu ranih 1960-tih godina. Model je bio Chevrolet Corvair kojeg je proizvodio General Motors – GM. Automobil je imao lošu reputaciju zbog toga što je imao jako loše performanse pri malim brzinama, a ogroman turbo lag je tečnu vožnju činio u ovom automobilu praktično nemogućom.

Turbo lag je ono što je automobilskoj industriji pravilo veliki problem i sprečavalo da se automobili koji su u to doba koristili turbo punjač proglase praktičnima. Turbo punjači su se u to doba obilato koristili u auto sportu – počevši od ikone BMW-a 2002 turbo modela pa do “endurans” trka i na kraju same Formule 1, međutim vozači trkačkih automobila su uspevali da se izbore sa prilično neugodnim turbom motorima iz tog doba, ali to nije bilo rešenje za svakodnevnu vožnju i normalnog vozača. Turbine iz tog doba su bile veoma velike i teške pa su samim time bile veoma inertne. Takve turbine se nisu mogle zavrteti ispod 3500 obrtaja, pa je opseg rada motora do 3500 obrtaja bio veoma slab obzirom da je u doba kompresija turbo motora bila 6,5:1 kako bi se izbeglo pregrevanje glave cilindara.

Porše je pionir kada se govori o relativno praktičnim turbo automobilima. 1975. godine se pojavio model 911 Turbo 3.0 koji je koristio rešenje do koga su došli Porešovi inženjeri. Mehanizam se zasnivao da se koriste takozvane “recirkulišuća” creva koja su omogućaval turbini da se zavrti pre početka rada pa se time umanjivao lag. Model iz 1978. Porše 911 Turbo 3.3 koji je nasledio model 3.0 turbo je uneo još jedan novitet – interkuler koji je dodatno umanjio lag i doprineo povećanju snage motora.

Tokom 80-tih godina tehnologija proizvodnje turbo punjača je evoluirala u pravcu kultivisanijeg rada. Tokom zadnjih godina se kod automobila sa turbo punjačima koristi još jedan sistem umanjenja turbo laga – elektronska kontrola pritiska turbine. Rani turbo punjači su koristili primitivna mehanička rešenja sa “vejst gejt” ventilom kako bi izbegli prevelik pritisak i preveliku brzinu turbine. Kasnih 80-tih i početkom 90-tih godina sa razvojem elektronike je omogućena fina kontrola pritiska turbine pa tim sistemom omogućeno da, na primer, turbo isporučuje 1,4 bar ispod 3000 obrtaja, 1,6 bar od 3000 do 4500 obrtaja, a 1,8 bar iznad 4500 obrtaja. Tako finom kontrolom je postugnut linearan rast snage što je doprinelo tečnom osećaju u vožnji.

Kako radi turbo punjač?
 
Uprošćena shema motora sa turbo punjačem
Air filter – filter vazduha, Turbocharger – turbo punjač, Intake – usisna grana, Exaust – izduvna grana

Turbo punjači su jedan od nekoliko sistema za dodatno unošenje vazduha u motor tj. one kompresuju (smanjuju zapreminu) vazduha koji ulazi u motor. Prednost smanjivanja zapremine vazduha koji ulazi u motor kroz usisnu granu je da dozvoljava motoru da ima više vazduha u cilindru, a samim tim više goriva treba da bi se napravila odgovarajuća smesa. Samim time, dobija se više snage iz svake eksplozije unutar svakog cilindra motora. Motor sa turbo punjačem po definiciji proizvodi više snage od motora koji nema turbo punjač, a to značajno poboljšava odnos snaga / težina motora.
[img]://img247.imageshack.us/img247/7039/turbo3px1.jpg[/img]

Da bi turbo punjači postigli odgovarajuću kompresiju, turbo punjač koristi izduvne gasove motora da bi zavrteo svoju turbinu koja opet ubrzava unos vazduha. Turbina turbo punjača se obično vrti od 100 do 150 hiljada obrtaja u minuti, a kako je direktno povezana na izduvnu granu motora temperature na kojima turbina radi su veoma visoke.

Osnove:
Najlakši način da dobijete više snage iz motora je da povećate količinu vazduha i goriva koje motor može da sagori. Jedan od načina je da se poveća zapremina bilo povećanjem zapremine cilindara ili dodavanjem cilindara. Ako taj način nije moguć ili isplativ, turbo punjač je jednostavnije i kompaktnije rešenje.

Turbo punjači omogućavaju motoru da sagori više goriva i vazduha tako što u postojeću zapreminu motora sabijanjem ubacuje više goriva i vazduha. Mera za sabijenost je u barima (metrički sistem) ili psi (kolonijalni sistem – funte po kvadratnom inču).
1bar = 14,503 psi tj. 1psi = 0.068947 bar.

Tipičan pritisak turbina je obično oko 6-8 psi tj. oko 0,5 bar što znači da se u motor ubacuje 50% više vazduha (1 bar je normalan pritisak, a kada dodate 0,5 bar pritiska pomoću turba dobijate 1,5 bar tj. 50% povećanja pritiska). Za očekivati je da će i snaga skočiti za 50%, međutim sistem nije 100% efikasan tako da su povećanja snage u okviru 30 – 40% u zavisnosti od konstrukcije. Deo neefikasnosti potiče od toga što vazduh koji pokreće turbinu nije „besplatan“, tj. vazduh koji turbina pozajmljuje iz izduvne grane motora ima svoju cenu. Cena je da motor mora da uloži više energije da izbaci vazduh obzirom da na izlazu postoji otpor okretanja turbine koji taj izdvuni gas mora da savlada.

Turbine na visini

Turbo punjači pomažu na velikim visinama gde je vazduh dodatno razređen. Normalni motori će na takvom razređenom vazduhu imati manje snage na raspolaganju zato što će manje vazduha biti u cilindru, dok se kod motora sa turbo punjačem ta razlika daleko smanjuje (i dalje postoji pad snage, samo je manji) zato što će turbina iako je vazduh ređi ugurati daleko više tog ređeg vazduha zato što je on lakši pa će time malo kompenzovati gubitak gustine vazduha.

Stariji automobili sa karburatorom automatski povećavaju dotok goriva da bi parirali većem dotoku vazduha u motor, dok moderni automobili sa elektronskim ubrizgavanjem goriva takođe to rade, ali će to povećanje dotoka goriva biti srazmerno podatku koji šalje protokomer vazduha koji meri kao što mu i ime kaže koliko je vazduha ušlo u motor pa će odnos vazduha i goriva kod takvih motora biti uvek veoma blizu idealnom. Ukoliko turbina radi na visokom pritisku i elektronsko ubrizgavanje nema dovoljno jaku pumpu koja može da dopremi potrebnu količinu goriva u cilindre ili softver koji upravlja ubrizgavanjem goriva neće da dozvoli toliku količinu goriva ili brizgaljke za unos goriva u cilindar nemaju dovoljno veliku protočnu moć motor neće moći da maksimalno iskoristi turbo punjač pa će nostali delovi sistema za ubrizgavanje goriva morati dodatno da se modifikuju da iskoriste pun potencijal turbo punjača.

Način funkcionisanja turbo punjača:

Turbo punjač je pričvršćen na izduvnu granu motora, a ti izduvni gasovi okreću turbinu. Turbina je osovinom povezana sa kompresorom koji se nalazi između filtera za vazduh i usisne grane motora i taj kompresor sabija vazduh koji se ubacuje u cilindre. Izduv iz cilindara prolazi preko lopatica turbine koje okreću samu turbinu i što više vazduha prolazi kroz lopatice, to se turbina brže okreće. Sa druge strane osovine na koju je prikačena turbina nalazi se kompresor koji pumpa vazduh u cilindre. Kompresor je tzv. Centrifugalna pumpa – uvlači vazduh u centru svojih lopatica i gura ga dalje kako se okreće. Da bi izdržala 150000 rotacija u minuti osovina turbine mora biti pričvršćena veoma pažljivo. Većina ležaja bi pri ovoj brzini okretanja verovatno eksplodirala pa tako turbo punjači koriste fluid (ulje) koje je u veoma tankom sloju između lagera i osovine i pomoću koga se kuglagerima po kojima se osovina kreće samim tim smanjuje trenje, a istovremeno hladi osovinu i druge delove turbo punjača.
 
Izgled turbo punjača
Sa leve strane je kompresor koji sabija vazduh, a sa desne strane je turbina koja pomoću izduvnih gasova
pokreće kompresor pomoću osovine koja ih povezuje.

 
Sistem rada turbo punjača

 
Pera impelera na turbini

Problemi koji se javljaju kod turbo punjača

1.Previše pritiska
Kada se vazduh sabija u cilindre pod pritiskom koji pravi turbo punjač koje zatim klip dodatno sabija postoji povećana opasnost od samozapaljivanja smeše. Samozapaljivanje smeše se pojavljuje kada se smeša vazduha i goriva kompresuje preko kritične tačke čime dolazi do detonacije u cilindru iako svećica nije zapalila smešu što može oštetiti motor. Automobili sa turbo punjačima obično koriste visoko oktanska goriva (koja imaju veću otpornost ka samozapaljivanju) da bi izbegli ovaj problem. Problem se takođe može rešiti smanjenjem kompresije motora što naravno dovodi i do smanjenja snage motora.

2. Turbo Lag
Jedan od najlakše uočivih problema turbo punjača je da oni rade istog tretnutka kada pritisnete pedalu gasa, već je potrebno da motor obezbedi odgovarajuću količinu gasova, a onda je potrebno još nekoliko trenutaka da se turbina zavrti da bi počela sa radom što ima za rezultat da automobil naglo dobije snagu tek nekoliko trenutaka po pritiskanju pedale gasa. Jedan od načina za smanjenje ovog efekta (lag = zadrška prim.prev.) je da se smanji intertnost pokretnih delova, tj. umanjenje njihove težine. Ovo omogućava turbini i kompresoru vazduha da se brzo zavrte i počnu ranije sa povećanjem snage motora.

3. Mali ili veliki turbo punjač?
Siguran način za smanjenje inertnosti turbine i kompresora vazduha je da se turbo punjač načini što manjim. Mali turbo punjač će daleko brže obezbediti pritisak i na manjem broju obrtaja motora, ali neće biti sposoban da obezbedi dovoljno pritiska kada se motor zavrti i kada su mu potrebne velike količine vazduha da bi zadržao potreban pritisak. Dodatna opasnost je da se mala turbina na visokom broju obrtaja motora može vrteti prebrzo što može dovesti do njenog oštećenja.
Veliki turbo punjač može da obezbedi veliki pritisak na visokom broju obrtaja motora, ali je on težak i inertan te mu je potrebno više vremena da ubrza svoju tešku turbinu i kompresor vazduha.
… i njihova rešenja

Ventil za ispuštanje viška vazduha (vejst gejt – eng. wastegate)
Većina automobilskih turbo punjača imaju ventil za ispuštanje viška vazduha koji omogućava manjim turbo punjačima da se ne vrte previše brzo na visokom broju obrtaja, a istovremeno time što su mali umanjuju lag. Ventil za ispuštanje viška vazduha omogućava izduvnim gasovima da ne prelaze preko lopatica turbine. Ventil „oseća“ promenu pritiska i ako pritisak pređe određenu granicu to je indikator da se turbina okreće prebrzo i tada ventil ispušta deo izduvnih gasova tako da ne prelaze preko turbine i time omogućava turbini da uspori.
 
Wastegate ventili – desno se nalazi fabrčki, levo je visoko performansni

Lageri
Neki turbo punjači koriste bolje lagere umesto umesto lagera u tečnosti kao oslanjanje osovine turbine. To, naravno, nisu obični lageri – to super precizno napravljeni lageri, a materijali od kojih se prave su posebne legure koje mogu da izdrže velike brzine i temperature koje proizvodi turbina. Oni omogućavaju da se osovine turbine zavrte sa manje otpora nego uz pomoć korišćenja tečnosti umesto lagera koji se koriste u većini turbo punjača. Oni takođe omogućavaju korišćenje manjih i lakših osovina što opet pomaže turbo punjaču da se brže pokrene i time dodatno smanji turbo lag.
Keramičke lopatice na turbinama
Keramičke lopatice na turbinama su lakše nego one od čelika koje se najčešće koriste na turbo punjačima. Naravno ovo opet omogućava brži start turbine što opet umanjuje lag. Lopatice od keramike se recimo koriste kod IHI turbine na Mitcubishi Lanceru EVO.
interkuleri
Kada je vazduh kompresovan (po zakonima termodinamike) on se greje, a kada se vazduh greje on se širi. Tako jedan deo od povećanja pritiska turbo pujnača je rezultat zagrevanja vazduha pre nego on uđe u motor. Da bi se povećala snaga motora, cilj je povećati broj molekula vazduha u motor, a ne neophodno povećati pritisak vazduha. Interkuler je dodatna komponenta sistema koja liči na hladnjak, samo što vazduh prolazi kako kroz interkuler tako i oko njega. Vazduh koji treba da uđe u motor prolazi kroz interkuler i time se hladi, dok se spoljašnji vazduh pomoću ventilatora duva preko interkulera. Interkuler povećava snagu automobila tako što hladi vazduh pod pritiskom koji izlazi iz turbine pre nego što uđe u motor. To znači da turbo punjač koji radi na 0,5 bar pritiska uz pomoć interkulera ubacuje hladan vazduh na 0,5 koji sadrži daleko više molekula vazduha obzirom da hladniji vazduh je gušći nego topliji.

Dvostruki (Twin) Turbo – Paralelni ili sekvencijalni?

Korišćenje duplih turbo punjača je pitanje željene efikasnosti i mogućnosti da se oni negde fizički i postave. Za veće motore, recimo preko 2,5l, je bolje koristiti 2 manja turbo punjača umesto jednog velikog – kao što je to Porše radio na ranim modelima 911 Turbo. Kada su u pitanju V ili bokser konstrukcija motora takođe je poželjno koristiti dupli turbo zato što jedan turbo opslužuje jednu stranu motora i time se skraćuje dužina creva turbo punjača što umanjuje lag. Neki motori koji imaju dupli turbo imaju takav sistem koji izduvne gasove sa jedne turbine vode ka drugoj turbini i to je takozvani koncept “povratne sprege” koja obezbeđuje balansirani dovod snage u obe strane motora. Motori koji imaju paralelni dupli turbo su motori koji imaju po jednu turbinu za svaku stranu motora. S druge strane sekvencijalni dupli turbo je dizajniran da ubrza odgovor turbine i dodatno umanji lag. Takav sistem radi kako mu ime kaže sekvencijalno tj. na malom broju obrtaja radi mala turbina, a veća nije aktivna i time se postiže brz odgovor na srednjem broju obrtaja. Kada se količina izduvnih gasova dovoljno poveća uključuje se i druga turbina koja na dodatno povećava pritisak. Ono što je mana kod sekvencijalnih duplih turboa je velika količina creva koja je potrebna da bi sistem radio (izduvni gasovi moraju da dopru do obe turbine posebno kao i izlazi iz obe turbine moraju doći do usisnih grana motora) i samim tim je u poslednje vreme napuštena tehnika od strane proizvođača. Auotomobili koji koriste ovakav sistem turbina su Porše 959, Mazda RX7 treće generacije, Tojota Supra i Subaru Legasi.

Turbo niskog pritiska (Light Pressure Turbo – LPT)
Poslednjih nekoliko godina je ovo veoma popularan način korišćenja turbina. Saab kao pionir u ovoj oblasti je prvi put iskoristio LPT u masovnoj proizvodnji 1992. godine kada je prikazao, tada, novi model Saab 9000 2,3l Turbo Ecopower. Taj motor je imao samo 170KS, tj. 20KS više u odnosu na identiačan motor bez turbo punjača, a 30KS manje od standardnog 2,3l Turbo motora. Dok su ostali proizvođači želeli što veću cifru snage ili obrtnog momenta, Saab je pametno zaključio da iako je takav motor slabiji od konkurentskih, uz pomoć malog turba motor ima solidan obrtni momenat što omogućava dobro ubrzanje, ali je daleko lakši za vožnju obzirom da je turbo lag praktično nepostojeći, a odogovor na komandu gasa kao i kod atmosferskih motora. Saab je zbog bolje krive obrtnog momenta produžio odnos menjača pa je time dodatno uspeo i da umanji potrošnju i svede je na manje od atmosferskog motora iste veličine.

U prošlosti, loše vozne osobine i visoka potrošnja goriva su sprečavale da se turbo punjači koriste u automobilima koji su namenjeni širokom krugu ljudi. Proteklih godina taj trend je potpuno drugačiji zbog potražnje za većim prostorom i komforom što je dovelo do povećanja težine automobila pa da bi se perfromanse zadržale na prethodnom nivou potrebno je više snage, a za to se ili ugrađuje veći motor ili se dodaje turbo punjač. Kada u igru uđe i cena tj. želja za što manjim troškovima svakog proizvođača turbo ima nesumnjivu prednost i to je svakako tendencija koja će u narednim godinama biti sve više izražena. Masovno korišćenje turbina na dizel motorima u proteklih 15 godina je donelo veliki broj inovacija ut istovremeno smanjenje cene turbina, pa se proizvođači u poslednje vreme sve češće okreću turbo motorima. Na primer novi Opel ima 2.0 Turbo motor, a u najavi je i 1,6l Turbo. Alfa Romeo u najavi ima nekoliko motora koji koriste Turbo i Twin Turbo. VW koncern je pored 1,8 Turbo motora u gamu uvrstio i 2,0 Turbo, itd.

Takođe, dužni smo i da nabrojimo nekoliko većih proizvođača turbo punjača: Garett, KKK i IHI.

G punjač – Nastanak i razvoj

Obzirom da su Vokswagen-ov modeli Polo G40, Golf 2 G60 kao i Corrado G60 bili veoma popularni i svojevrsne ikone sa početka 90-tih, evo kratkog opisa kako G-punjač radi.

U vreme kad je u modi svih proizvođača automobila bila ugradnja turbo punjača, vodeći čovek tadašnjeg Volkswagenovog Odeljenja za razvoj, preuzeo je osnovnu ideju francuza L. Creuxa o punjaču u obliku zavojnice. Uvdeo je mogućnosti koje nudi ovakav punjač u odnosu na tadašenje alternativu – turbo punjačima. Prvi pokušaji s spiralnim punjačem obećavali su rešenja postavljenih zahteva šefova iz VW-a: spontan odaziv u donjem dijelu obrtaja, snaga raspoloživa duž ceelog područja obrtaja, smanjena buka, idealno za masovnu proizvodnju, upotrebljivo za različite koncepte motora.

1987. godine, počinje maloserijska proizvodnja motora s G-punjačem u VW Polo GT G40 sa snagom od 115 KS. Naziv G40 je nastao od oblika i, jer dužina zavojnice u “ubrzavajućem pužu” (nalik na G) ima i širinu u radnom delu punjača, koja iznosi 40 mm.

1988. godine slijedi ugradnja G60 punjača sa većim “ubrzavajućim pužem” (60 mm široko radno područje) u VW Corrado 1,8 sa 160 KS. U istoj godini je proizveden i VW Golf Rallye s G60 motorm i pogonom na sve točkove, u otprilike 5000 komada, prvenstveno zbog homologacije za rally trke, ali zbog restrikcija koje su se zahtevale na usisu, zaustavljena su službena učešća na trkama, te je tako oslobođen prostor za Audi Quattro. 1989. godine G60 se ugrađuje u VW Passat GT Syncro, a godinu poslije i u VW Golf GTI G60.

Najsnažniji motor pogonjen G-punjačem je proizveden od strane VW Motorsporta, 1,8 16v G60 snage 210 KS i obrtnim momentom od 250 Nm pri 5000 obrtaja u minuti, a isporučivan je u verzijama VW Golfa II sa petorim vratima.

I u današnje vrijeme tehnika G-punjača odoleva zubu vremena, iako je Volkswagen već odavno prestao s njegovom proizvodnjom. Glavni razlozi za to su relativno visoki troškovi proizvodnje i ne tako zanemarujuća mogućnost kvarova (snaga vozila se često precjenjivala od strane vozača). Ono što je još zanimljivo je da G punjač prati prilično loša reputacija kao kvarjivog uređaja, a kako Nemački VW sajtovi kažu krivac je loše zamišljena osovina oko koje se okreće kaiš za pokretanje punjača i preporučuju ugradnju druge koja rešava bukvalno sve probleme.

G punjač – Tehnički podaci

G60 je mehanički pogonjen punjač (kompresor) koji je ime dobio po obliku slova G, a 60 označava širinu spiralnih propelera izražena u mm. U spiralnom kompresoru, usisani vazduh iz motora prolazi kroz kučište, nalik pužu, gdje se sabija do 0,7 bara. Ovaj kompresor, koji sam troši i do 18 KS, pogonjen je zupčastim remenom. Velika prednost mu je snaga duž svih brojeva okretaja. A slabosti? Kada motor dosegne 5800 o/min, mala spirala u kompresoru se vrti na 11 000 okr/min, te je to granično područje na kojem počinju kritične vibracije u kompresoru te to može biti kobno za cijeli motor. Inače, za G60 motore, najveći obrtni moment je na 5600 obrtaja u minuti.
Turbo ili kompresor

To je jedno od češćih pitanja i koja, na žalost, nemaju jednostavan odgovor. Tačnije odgovor jeste jednostavan, ali on glasi: „zavisi“. Ovaj deo teksta će prednosti i mane kompresora navesti i pomoći Vam da sagledate u kojim slučajevima je bolje primeniti odgovarajući sistem.

Sličnosti
I kompresori i turbo punjači su sistemi koji omogućavaju usis vazduha pod pritiskom i samim tim im je cilj isti – da što više sabiju vazduha u cilindre motora u odnosu na ono što atmosferski pritiskak normalno omogućva. Prednost je što će motor tada moći da izgori više goriva u jednom ciklusu sagorevanja, a to dovodi do povećanja snage. Iz tog razloga turbo kompresori i turbo punjači omogućavaju 40 – 100 % povećanja snage (u zavisnosti od pritiska kojim se sabija vazduh) nego atmosferski motori iste zapremine.

Cena
Cena kompresora i turbo punjača za isti motor su praktično iste pa cena nie igra nikakvu ulogu u izboru jednog od ova dva sistema.

Lag
Nedostatak laga je jedna od najvećih prednosti turbo kompresora u odnosu na turbo punjače. Turbo punjači su pogonjeni izduvnim gasovima pa se zbog toga pojavljuje ta zadrška dok se impeler ne zavrti do brzine koja omogućava odgovarajuću kompresiju vazduha Turbo punjači se pogone kaišem koji je sa druge strane zakačen na radilicu i time praktično rade od najmanjeg broja obrtaja.

Efikasnost
Ovo je najveća prednost turbo punjača. Turbo punjači su u principu ekonomičniji zato što se pokreću pomoću izduvnih gasova koji su da kažemo, besplatni tj. ne služe ničemu, dok kompresor koristi snagu radilice i time umanjuje snagu koja je dostupna za pokretanje automobila. Turbo punjači ipak nisu potpuno efikasni zato što okretanje lopatica turbine pravi podpritisak na izduvnoj grani tako da motor ima određn otpor kada izbacuje izduvne gasove.
Toplota
Kako je turbo punjač montiran na izduvnu granu koja je uvek veoma zagrejana time se samo kućište turbine greje, a time se dodatno vazduh koji turbo sabija dodatno greje što negativno utiče na gustinu kompresovanog vazduha pa se često koristi interkuler kako bi se taj vazduh ohladio, a time se komplikuje instalacija sistema. Kod kompresora centrifugalni kompresor generiše veoma hladan kompresovan vazduh pa ne postoji potreba za montiranjem interkulera za pritiske ispod 0,8 bar, dok u slučaju korišćenja roots kompresora kompresovani vazduh ima daleko veću temperaturu pa je potrebno koristiti interkuler i pri malim pritiscima.

Udar snage
Kako turbo punjači imaju zadršku (lag) postoji tzv. udar snage kada se vejstgejt otvori tj. kada turbo punjač proradi. Ovaj udar je veoma štetan po automobil, a posebno po nosače motora, ogibljenje i sistem za upravljanje i može da učini automobil teško upravljivim. Povratni pritisak Turbo punjači svojom montažom na izduvnoj grani prave parazitski povratni pritisak u samoj grani i time motor troši više energije da bi izbacio izduvne gasove za onoliko koliko je potrebno da se taj parazitski pritisak savlada. Taj pritisak umanjuje efikasnost turbo punjača.

Buka
Turbo punjači su u principu tiši od kompresora, a položaj turbine na izduvnoj grani može samo da umanju količinu buke koju generiše motor i time utišavaju motor. Turbo kompresori imaju specifičan zvuk, a pogotovu centrifugalni i mogu biti veoma glasni (naravno većina vozača ovaj zvuk naprosto obožava).

Pouzdanost
Kompresori su, generalno, daleko pouzdaniji od turbo punjača. Kada se automobil (i motor) ugasi vreli motor i izduvna grana mogu da visokom temperaturom oštete ulje koje je unutar turbo punjača koje pšodmazuje lagere. Dodatno, veliki broj obrtaja turbine (do 150000 obrtaja u minuti) može da dovede do problema sa ležajevima u turbini ida time skrati životni vek turbo punjača.

Maksimalna snaga
Turbo punjači su slavu stekli zato što imaju mogućnost da se okreću veoma brzo i time generišu fantastično visoke pritiske kompresije (preko 2 bar-a) i time naravno prave daleko više snage nego turbo kompresori.

Mogućnost poboljšanja performansi samih turbo punjača/kompresora – tjuniranje
Turbo punjači zbog svoje kompleksnosti i zavisnosti od izduvnih gasova su zloglasno teški za modifikacije. Kompresori, sa druge strane, su po tom pitanju lakši i dodatno zahtevaju samo manje intervencije na sistemima za ubrizgavanje goriva i paljenje.